On the denotational semantics of the untyped lambda-mu calculus
نویسنده
چکیده
Starting with the idea of reflexive objects in Selinger’s control categories, we define three different denotational models of Parigot’s untyped lambda-mu calculus. The first one is built from an intersection types system for the lambda-mu calculus leading to a generalization of Engeler’s model of the untyped lambda calculus. The second model introduces correlation spaces (coming from Girard’s model of classical logic) in the usual coherent model of the untyped lambda calculus. The third model is simply obtained by showing that Ker-Nickau-Ong’s game model of the untyped lambda calculus is also a model of the untyped lambda-mu calculus.
منابع مشابه
Denotational Semantics of Call-by-name Normalization in Lambda-mu Calculus
We study normalization in the simply typed lambda-mu calculus, an extension of lambda calculus with control flow operators. Using an enriched version of the Yoneda embedding, we obtain a categorical normal form function for simply typed lambda-mu terms, which gives a special kind of a call-by-name denotational semantics particularly useful for deciding equalities in the lambda-mu calculus.
متن کاملEquational incompleteness and incomparability results for lambda calculus functional semantics
In this paper we establish the existence of a lambda theory which can be modeled in continuous semantics but neither in stable nor hypercoherent semantics. That give us a new equational incompleteness result for the stable semantics and the first one for a strongly stable semantics. We deduce the firsts equational incomparability theorems for untyped lambda calculus semantics.
متن کاملLecture notes on the lambda calculus
This is a set of lecture notes that developed out of courses on the lambda calculus that I taught at the University of Ottawa in 2001 and at Dalhousie University in 2007. Topics covered in these notes include the untyped lambda calculus, the Church-Rosser theorem, combinatory algebras, the simply-typed lambda calculus, the Curry-Howard isomorphism, weak and strong normalization, type inference,...
متن کاملA Fully Abstract Semantics for Concurrent Graph Reduction
This paper presents a fully abstract semantics for a variant of the untyped λ-calculus with recursive declarations. We first present a summary of existing work on full abstraction for the untyped λ-calculus, concentrating on ABRAMSKY and ONG’s work on the lazy λ-calculus. ABRAMSKY and ONG’s work is based on leftmost outermost reduction without sharing. This is notably inefficient, and many impl...
متن کاملClassical logic, continuation semantics and abstract machines
One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped call-byname λ-calculus with Felleisen’s control operator C. We derive the transition rules for an abstract machine from a continuation sema...
متن کامل